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SWKB approach to confined isospectral potentials
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Recently we had formulated the supersymmetric Wentzel–Kramers–Brillouin (SWKB)
quantization rule for one-dimensional confined quantum systems and applied the same to two
trigonometric potentials, tangentially limited by infinite walls at x = 0 and x = L, viz.,
V (x) = V0 cot2(πx/L) and the Pöschl–Teller potential, V (x) = V01 cosec2(πx/(2L)) +
V02 sec2(πx/(2L)). Both the potentials have received quite a lot of attention by various au-
thors because of their importance in molecular physics. Though these potentials have been
studied in the framework of WKB, BS (Bohr–Sommerfeld), mBS (matrix formulation of BS)
formalisms, it was observed that the supersymmetric approach not only rendered the calcula-
tions simpler and more transparent, it also reproduced the exact analytical energies in both the
cases.

In this study, we shall generate isospectral Hamiltonians of the above potentials with the
help of a modified form of Darboux’s theorem. We shall show that though the new potentials
look different from the original ones, and have different eigenfunctions, they too, are confined
in the same region of space, and share the same energy spectrum as their original counterparts.
This may be of substantial importance in determining the energy spectrum of highly non-trivial
systems.

KEY WORDS: supersymmetry, WKB quantization, spatial confinement, isospectral Hamil-
tonians, Darboux’s theorem

1. Introduction

Confined quantum systems have captured the attention of scientists from far and
wide for the last two decades. Since the beginning of 1980s, rapid progress in very
accurate lithographic techniques have made it possible to confine electrons, atoms and
molecules in microscopic cavities [1], thus giving birth to the so-called quantum wires
(quasi-one-dimensional structure) [2,3], quantum wells (quasi-two-dimensional struc-
ture) [4–6] and quantum dots (quasi-zero-dimensional structure) [7–11]. Quantum wires
are produced in the form of miniature strips, etched in a sample containing a quantum
well. Their typical transverse dimensions are significantly larger than the depth of the
quantum well, reaching 10–400 nm. Imposing strong confinement in all 3 spatial dimen-
sions, i.e., complete quantization of the particle’s free motion results in a quantum dot.
Spatial confinement significantly alters the physical and chemical properties of the sys-
tem [12–15]. It influences the bond formation and chemical reactivity inside the cavities
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to a great extent. Even the optical properties (absorption and emission of light in the
visible or far infra-red range, Raman scattering) and electrical properties (capacitance
and transport studies) change radically. Hence this branch of science is extremely useful
in the study of thermodynamic properties of non-ideal gases, investigation of atomic ef-
fects in solids, in atoms and molecules under high pressure, impurity binding energy in
quantum wells, and even in the context of partially ionised plasmas.

Quantum dots absorb and emit light in a very narrow spectral range, which is con-
trolled, for instance, by an applied magnetic field. Hence it is expected that they might
be used to construct more precisely controlled semiconductor lasers. The strong quanti-
zation of the electron energy will probably allow quantum-dot lasers to be able to work
at high temperature and at lower injection currents [1]. Their application in a new gen-
eration of computers is also very promising [16]. The extremely small dimension and
possibility of dense packing of quantum-dot matrices could permit them to be used for
memory media of huge capacity, further enhancing the importance of confined quantum
systems.

Recently, we had studied spatial confinement in the framework of WKB [17] and
SWKB (its supersymmetric version) [18] methods. In the present work we shall take
up two one-dimensional trigonometric potentials (tangentially limited by infinite walls
at x = 0 and x = L, where L is the dimension of the confining box) of tremendous
importance in molecular spectrocopy, viz.,

V (x) = V0 cot2πx

L
(1)

and the Pöschl–Teller potential [19],

V (x) = V01 cosec2πx

2L
+ V02sec2πx

2L
. (2)

(It may be mentioned here that though the first potential is a special case of the second
one with the identification V01 = V02 = V0/4 , it has been discussed by various authors
due to its importance in molecular physics [20]. Potential (1) represents a well symmet-
ric around x = L/2. Unless V01 = V02, potential (2) represents an asymmetric well.
For small V0, V01, V02, both the potentials represent perturbations on an infinite square
well.) Though both the potentials are periodic in nature, we consider a single hole only
as the barriers put by the singularities between the holes are impenetrable. Both the
potentials have been studied in the framework of BS (Bohr–Sommerfeld), mBS (matrix
formulation of Bohr–Sommerfeld), WKB (Wentzel–Kramers–Brillouin) [20] as well as
the SWKB (supersymmetric version of WKB) [18] approximations, of which the last
approach (viz. the SWKB quantization rule) reproduces the exact Schrödinger energies
in both the cases.

Here, we shall generate a series of exactly solvable isospectral supersymmetric
(SUSY) Hamiltonians starting from a single exactly solvable SUSY Hamiltonian with
the help of a modified version of the Darboux’s theorem [21]. We shall show that though
the new potentials have different shapes and different eigenfunctions, they share the
same energy spectrum as the original one. Even the region of confinement of both the
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old and new potentials remains the same. This enables one to determine the exact eigen-
energies of highly non-trivial potentials.

The organization of the paper is as follows. To make the paper self-contained,
we briefly describe the SWKB formalism in section 2, and a modified version of Dar-
boux theorem in section 3. In section 4, we calculate the isospectral Hamiltonians for
the confined potentials given above. The wave functions of the confined potentials and
their isospectral counterparts are also compared. Section 5 is kept for discussions and
conclusions.

Units used throughout are h̄ = 2m = 1.

2. SWKB formalism for confined quantum systems

The SWKB method follows from the ordinary WKB approximation by writing the
potential V (x) in terms of the superpotential W0(x) [21]

V (x) = W 2
0 +W ′0(x). (3)

This modifies the WKB quantization condition , viz.,∫ b

a

[
E − V (x)

]1/2
dx =

(
n+ 1

2

)
π, n = 0, 1, 2, . . . , (4)

where a, b are the roots of the equation

E − V (x) = 0 (5)

to the SWKB quantization condition∫ d

c

[
E′ −W 2

0 (x)
]1/2

dx = nπ, n = 0, 1, 2, . . . , (6)

with c, d being the roots of the equation

E′ −W 2
0 (x) = 0, (7)

E′ being the supersymmetric energy. The ground state

ψ0 = exp

(∫
W0(x) dx

)
(8)

will be normalizable if
∫
W0(x) dx exists.

We had applied the above formalism to the two trigonometric potentials, given by
equations (1) and (2), with impenetrable walls at x = 0 and x = L [18]. The supersym-
metric WKB approach yielded the exact Schrödinger energies as well as ground state
eigenfunctions in both the cases [24,25].

Omitting the detailed calculations (with the help of formulae in [23]) for brevity,
we quote the SWKB energy directly.
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For the Pöschl–Teller potential given by

V (x) = V01 cosec2 πx

2L
+ V02 sec2 πx

2L
(9)

the energy is calculated to be

Eswkb
n = E∞1

{
n− 1

2
+
√
v01 + 1

16
+
√
v02 + 1

16

}2

, n = 1, 2, 3, . . . , (10)

and the ground state eigenfunction takes the form

ψ0 = |N0| sinA1 x

cosA2 x
, (11)

where |N0| is fixed by normalisation. In the above expressions, the symbols stand for

V01=A2
1 − A1, (12)

V02=A2
2 + A2, (13)

v01=V01/E
∞
1 , v02 = V02/E

∞
1 , En = εnE

∞
1 ,

where E∞1 = π2/L2 = 4, and the superpotential is taken as

W0(x) = A1 cot x + A2 tan x. (14)

Spatial confinement within the region 0 < x < L significantly alters the boundary
conditions and imposes the following constraint on A1 and A2:

A1 > 0, A2 < 0.

Similarly, for the special case,

V01 = V02 = V0

4
,

the Pöschl–Teller potential may be cast in the form

V (y) = V0 cot2y. (15)

Taking the superpotential to be

W0(y) = A coty (16)

with

V0=A2 − A, (17)

E =E′ + A, (18)

the SWKB quantization condition (8) yields the energy

Eswkb
n = E∞1

{
n2 +

(
n− 1

2

)√
4v + 1− 1

}
, n = 1, 2, 3, . . . , (19)
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with the identification

V0= vE∞1 , (20)

E∞n = n2, (21)

and the ground state wave function takes the form

ψ0(y) = |c0| exp

(∫
W0(y) dy

)
= |c0| sinA y, (22)

where |c0| is the normalisation factor. Again, A must satisfy the condition

A > 0

because of spatial confinement.

3. Modified form of Darboux’s theorem

Now we shall show how a modified form of Darboux theorem enables one to ob-
tain a series of new exactly solvable isospectral Hamiltonians, i.e., Hamiltonians with
the same eigenvalues [21]. Thus if one knows the energy spectrum of a certain po-
tential, one can obtain a series of highly non-trivial potentials with the same energy
spectrum.

We know that if the potential V−(x) can be written as

V−(x) = W 2
0 (x)−W ′0(x) (23)

then it is isospectral with the potential V+(x) where

V+(x) = W 2
0 (x)+W ′0(x). (24)

However, in the present case V−(x) and V+(x) are of the same nature. To find a non-
trivial partner we notice that the Ricatti equation

W 2
1 (x)−W ′1(x) = W 2

0 (x)−W ′0(x) (25)

has a solution W1 	= W0 which is given by [21]

W1(x) = W0(x)− u(x), (26)

where u is given by

u′ − 2uW0 + u2 = 0. (27)

It is to be noted here that W 2
1 (x)+W ′1(x) 	= W 2

0 (x)+W ′0(x).
But V1(x) = W 2

1 (x) +W ′1(x) is isospectral with W 2
1 (x) −W ′1(x), and hence iso-

spectral with V+(x) = W 2
0 (x) +W ′0(x), with the possible exception of the ground state

of V+(x). It is also phase-equivalent with V+(x) [26,27].
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It can be found (after some calculations) that u(x) is of the form

u(x) = exp{2 ∫ x
W0(t) dt}

k + ∫ x dr exp{2 ∫ r
W0(t) dt} , (28)

where k in an integral constant. In other words, u(x) is of the form f ′/f where f is
given by

f = k +
∫ x

dr exp

{
2
∫ r

W0(t) dt

}
. (29)

Hence, the isospectral potential V1(x) can be explicitly written as

V1(x) = W 2
0 (x)+W ′0(x)+

2f ′2

f 2
− f ′′ + 2W0f

′

f
. (30)

One can repeat this process and obtain a series of isospectral and phase-equivalent
potentials. For example, one can write

W2(x) = W1(x)+ g(x) (31)

with

g(x) = exp{−2
∫ x

W1(t) dt}
k′ + ∫ x dr exp{−2

∫ r
W1(t) dt} (32)

and k′ another integral constant, and obtain another isospectral Hamiltonian (with super-
potential W2(x)) given by

H2 = − d2

dx2
+ V2(x), (33)

where

V2(x) = W 2
2 −W ′2 (34)

and so on.
The ground state wave function ψ0

1 (x) of the equivalent isospectral V1(x) is given
by

ψ0
1 (x) = exp

(∫
W1(x) dx

)
(35)

apart from a normalization factor. With u(x) = f ′/f , equation (31) enables us to express
ψ0

1 (x) in terms of the original ground state wave function ψ0(x) as

ψ0
1 (x) =

1

f
ψ0(x). (36)

Whether the new ground state ψ0
1 (x) is unphysical or physical, depends on the value of k.
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4. Isospectral Hamiltonians

In this section we shall calculate the isospectral Hamiltonians for the potentials
given in (1) and (2) above.

The Pöschl–Teller potential is given by

V (x) = V01 cosec2x + V02 sec2 x.

If the original superpotential be

W0(x) = A1 cot x + A2 tan x (37)

then the equivalent superpotential is given by

W1(x) = W0(x)− u(x), (38)

where u(x) turns out to be (from equations (33) and (42))

u(x) = sinσ1 x/ cosσ2 x

k + ∫ dx sinσ1 x/ cosσ2 x
. (39)

In the above equation, σ1 and σ2 stand for,

σ1= 2A1, (40)

σ2= 2A2. (41)

For the existence of bound states, i.e., for the coefficients of cosec2x and sec2 x to be
positive, σ1, σ2 must be constrained to

σ1 > 2, σ2 < −2.

We shall take a suitable choice for σ1 and σ2. For the potential to be asymmetric, V01 	=
V02, which in turn implies that σ1 	= −σ2. Let us take σ1 = 4, σ2 = −3. This yields the
value of u(x) as

u(x) = sin4 x cos3 x

k + sin3 x
7

{
2
5 + 3

5 cos2 x − cos4 x
} . (42)

Thus the isospectral potential turns out to be

V1(x)= 2 cosec2x + 3

4
sec2 x − 49

4

+ 2 sin8 x cos6 x[
k + sin3 x

7

{
2
5 + 3

5 cos2 x − cos4 x
}]2

+ 2 sin3 x cos2 x{3 sin2 x − 4 cos3 x}
k + sin3 x

7

{
2
5 + 3

5 cos2 x − cos4 x
} . (43)

V1(x) gives a new Hamiltonian (with superpotential W1), which is isospectral with
the supersymmetric (SUSY) Hamiltonian of the Pöschl–Teller potential (equation (2))
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with superpotential W0. From equation (40), the ground state wave function of the
Schrödinger equation with potential V1(x) (equation (48)) is given by

ψ0
1 (x) = |N1| sin2 x cos3/2 x[

k + sin3 x
7

{
2
5 + 3

5 cos2 x − cos4 x
}] (44)

while the ground state wave function of the original Schrödinger equation (equation (2)),
is given by

ψ0(x) = |N0| sin2 x cos3/2 x, (45)

where N0 and N1 are normalization constants. It is easily observed that ψ0(x) vanishes
at the boundaries x = 0 and x = π/2, the reason being the spatial confinement of the
Pöschl–Teller potential (equation (2)) in the range 0 < x < π/2. The range of the
equivalent potential is determined by the choice of k. We shall choose k suitably such
that there is no singularity in the range 0 < x < π/2, and ψ0

1 (x) is a physical solution.
Hence both the original (equation (2)) as well as the equivalent (equation (48)) potentials
are confined in the same spatial region 0 < x < π/2.

Figure 1 shows the plot of V (x) against x for the Pöschl–Teller potential given by
equation (2), viz., V (x) = V01 cosec2x + V02 sec2 x (shown by the broken curve) and
its equivalent isospectral form V1(x) given in equation (43) (shown by the solid line) for
k = −0.13.

Figure 2 shows the plot of the ground state wave function ψ0(x) (equation (45))
for the potential given in equation (2) (shown by the broken curve) and ψ0

1 (x) (equa-

Figure 1. Plot of logV (x) against x. Broken curve: logV (x) from equation (2) (original potential). Solid
curve: logV1(x) from equation (43) (equivalent potential).
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Figure 2. Plot of ground state wave function ψ(x) against x. Broken curve: ψ0(x) from equation (45)
(original wave function). Solid curve: ψ0

1 (x) from equation (44) (equivalent wave function).

tion (44)) for the equivalent potential in equation (43) (shown by the solid curve) for
k = −0.13.

Similarly for equation (1), viz.,

V (y) = V0 cot2y, u(y) = sinσ y

p + ∫ dy sinσ y
, (46)

where

σ = 2A. (47)

For bound states to exist, the coefficient of cot2y must be positive. Hence, σ must be
constrained in the range σ > 2.

Suitably taking σ = 3,

u(y) = sin3 y

k′ + cos3 y

3 − cos y
. (48)

Working in an analogous manner, the isospectral partner turns out to be

V1(y) = 3

4
cot2y − 6

4
+ 2 sin6 y{

k′ + cos3 y

3 − cos y
}2 −

6 sin2 y cos y

k′ + cos3 y

3 − cos y
. (49)

This potential is quite different from the original potential V (y) = V0 cot2y (equa-
tion (1)). Choosing k′ suitably, one can ensure that there is no singularity in the range
0 < y < π , so that the spatial range of both the original and equivalent potential remains
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Figure 3. Plot of V (y) against y. Broken curve: V (y) from equation (1) (original potential). Solid curve:
V1(y) from equation (49) (equivalent potential).

unchanged. This fact is clear from the plots of the original (equation (1)) and equivalent
(equation (54)) potentials presented in figure 3 for k′ = 0.8.

The ground state wave function of the isospectral potential (equation (49)) is cal-
culated in an analogous way and turns out to be

ψ0
1 (y) = |c1| sin3/2 y

k′ + cos3 y

3 − cos y
(50)

while the ground state wave function for the potential in equation (1) is

ψ0(y) = |c0| sin3/2 y, (51)

where c0 and c1 are obtained from the normalization condition.
Figure 4 shows the plot of the ground state wave function ψ0(y) (equation (51))

for the potential given in equation (1), (shown by the broken curve) and ψ0
1 (y) (equa-

tion (50)) for the equivalent potential in equation (49) (shown by the solid curve) for
k′ = 0.8.

Though the SWKB approach reproduces the exact analytical eigen energies as well
as the ground state wave functions in both the cases, it is interesting to study the behav-
iour of the excited state wave functions. For the excited states, however, the SWKB wave
functions have to be evaluated numerically. For this purpose we shall deal with potential
(1) only. The other potential follows in a similar manner.
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Figure 4. Plot of ground state wave function ψ(y) against y. Broken curve: ψ0(y) from equation (51)
(original wave function). Solid curve: ψ0

1 (y) from equation (50) (equivalent potential).

The SWKB solution to the 1-dimensional Schrödinger equation (with a confined
potential) (

d2

dx2
+ $2(x)

)
ψn(x) = 0, (52)

where

$ = (E′n − V
)1/2 = (E′n −W 2

)1/2 + 1

2

W ′

(E′n −W 2)1/2
+ · · · (53)

can be obtained just like the confined WKB solutions [17]. We simply quote the results
here.

ψn(x)= N√
$

sin

(∫ x

0

(
E′n −W 2

)1/2
dx + 1

2
sin−1 W(x)√

E′n

)
, 0 < x < x1, (54)

ψn(x)= N√
κ

[
1

2
sin θe−(β(x)−λ(x)) + cos θe(β(x)−λ(x))

]
, x1 < x < x2, (55)

ψn(x)= N√
$

sin

(
θ +

∫ x

x2

(
E′n −W 2

)1/2
dx + 1

2
sin−1 W(x)√

E′n

)
, x2 < x < L,

(56)

where x1, x2 are the roots of the equation

E′n −W 2 = 0



278 A. Sinha, N. Nag / SWKB approach to confined isospectral potentials

and

θ = 1

2

∫ x2

x1

(
E′n −W 2)1/2

dx, (57)

β =
∫ x

x1

(
W 2 − E′n

)1/2
dx, (58)

λ= 1

2
ln

W(x) + (W 2 − E′n)1/2√
E′n

. (59)

The analytical eigenfunctions of the system with potential (1) are given by [25]

ψn(x) = cn(sin x)−2ρF

(
−n

2
− 2ρ,

n

2
,

1

2
, cos2 x

)
, (60)

where

ρ = 1

4

(√
4V0 + 1− 1

)
. (61)

5. Results and discussions

We had shown earlier [18] that the SWKB approach reproduces the exact analyti-
cal eigenenergies as well as the ground state eigenfunctions for both the potentials under
study, though the WKB, BS or mBS energies [20] are far away from the exact results.
In this study we have generated the equivalent potentials of both (1) and (2) by a modi-
fied form of Darboux’s theorem. Though quite different from the original potentials, the
respective equivalent counterparts (equations (49) and (43)) have the same energy spec-
trum and spatial boundary, with the possible exception of the ground state. However, the
choice of k determines whether the solutions are physical or unphysical. Thus this ap-
proach may be used to determine the energy eigenvalues of highly non-trivial confined
potentials. The original potentials, along with their respective isospectral forms , are
shown in figures 1 and 3.

Using the fact that the SWKB approach reproduces the exact analytical ground
state eigenfunctions, we have evaluated the ground state wave functions (equations (51)
and (45)) of the potentials (equations (1) and (2)), as well as those (equations (50)
and (44)) of their respective equivalent forms (equations (49) and (43)). These are
depicted graphically in figures 2 and 4, respectively. The wave functions have been
normalised somewhat differently, by dividing by their value at π/2. It is easy to ob-
serve from the figures that the ground state is shared by both the original as well as the
equivalent potentials in these particular cases. However, the SWKB eigenfunctions in
the excited states have to be evaluated numerically.
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